Equations aux dérivées partielles et systèmes dynamiques
Cette thèse s'inscrit dans le vaste domaine des équations aux dérivées partielles et des systèmes dynamiques, et s'articule autour de deux sujets distincts.
Le premier est relié à l'étude des équations de coagulation-fragmentation discrètes avec diffusion. En utilisant des lemmes de dualité, on établit de nouvelles estimations $L^p$ pour des moments polynomiaux associés aux solutions, sous une hypothèse de convergence des coefficients de diffusion. Ces estimations sur les moments permettent ensuite d'obtenir de nouveaux résultats de régularité, et de démontrer qu'une fragmentation suffisamment forte peut empêcher la gelation dans le modèle incluant la diffusion.
Le second sujet est celui des preuves assistées par ordinateur dans le domaine des systèmes dynamiques. On améliore et on applique une méthode basée sur le théorème du point fixe de Banach, permettant de valider a posteriori des solutions numériques. Plus précisément, on élargit le cadre d'application de cette méthode pour inclure des opérateurs avec un terme dominant linéaire tridiagonal, on perfectionne une technique permettant de calculer et de valider des variétés invariantes, et on introduit une nouvelle technique qui améliore de manière significative l'utilisation de l'interpolation polynomiale dans le cadre de ces méthodes de preuves assistées par ordinateur.
Ensuite, on applique ces techniques pour démontrer l'existence d'ondes progressives pour l'équation du pont suspendu, et pour étudier les états stationnaires non homogènes d'un système de diffusion croisée.